Mathematical Time Domain Study of Negative Feedback System Using Limiting Progression

Arindam Bose

Abstract—Every stable feedback system has certain finite limiting value with respect to time. This paper describes a mathematical analytical study for stable negative feedback system with the help of limiting progressions. Some limiting progressions described in this paper have a finite limiting value which can be predicted previously using the characteristics parameters of the system by analytical method. Some of these parameters are independent and primary properties of the system itself. The final value of the feedback system having transfer function as a limiting progression can be predicted and sometimes be controlled using the parametric solution.

Index Terms—Control system, Limiting progression, Limiting progressive function, Negative feedback system, Predicting expression, Transfer function.

INTRODUCTION 1

OST of the negative feedback systems are stable with respect to time, as they converge to a finite limiting value. And marginally stable feedback systems are bounded-oscillatory in nature.Fig.1 describes a general configuration a negative feedback system.

We know that every negative feedback system has a damping coefficient (ζ) depending which they are classified into three sections:

- a. Under-damped system,
- b. Critically damped system and
- c. Over-damped system.

Now in this paper we will discuss about the mathematical study of these three systems with the help of Limiting Progressions.

Definition of Limiting Progressions: There are some sorts of series which are defined by a single valued iterative function (expression), where the result (dependent variable) is again used as the independent variable in the same expression and a limiting value can be reached as we go for infinite times of iteration. This type of series can be called as LIMITING PRO-GRESSION. So, in Limiting Progression the output is totally feedback to the input, NOT partially. Rather we can say that the output in certain state is totally put as the input of the next state.

i.e. if f(x, i) is the iterative function of random variable x and *i* be the order of iteration and is defined as f(x, i + 1) =f(f(x,i), i+1) and $\lim_{i\to\infty} f(x,i) = c$ (constant), then f(x,i) is called LIMITING PROGRESSIVE FUNCTION.

And the equation *u*(*system parameters*) which predicts this constant term *c* is called PREDICTING EXPRESSION. Such that $u(system \ parameters) = c$

2 DISCUSSION ABOUT SOME TYPES OF LIMITING PROGRESSIONS

Let us consider some types of limiting progressions.

2.1 Type I

Limiting Progressive Function:

$$f(x,i) = (x/p + n)_i \text{ where } x \in R, p \in R - \{0,1\},\\ n \in R - \{0\}, i \in I$$

Where R represents set of REAL numbers and I represents set of INTEGERS.

Predicting Expression: $u(p, n) = \frac{np}{p-1}$

Form

JSER © 2012

$$f(x,i) = \left(\frac{x}{p} + n\right)_i$$
 where $x \in R$ is a random variable,

[•] Arindam Bose is currently pursuing BTech degree program in electronics and communication engineering from Future Institute of Engineering and Management of West Bengal University of technology, India, PH-+919051320505. E-mail: adambose1990@gmail.com

International Journal of Scientific & Engineering ResearchVolume 3, Issue 9, September-2012 ISSN 2229-5518

 $p \in R - \{0,1\}$ is a real constant, $n \in R - \{0\}$ is a real constant, $i \in I$ is the order of iteration. ... (1.1) This is one of the limiting series. Here we begin with $x|_i$ as a

random variable, then apply to (1.1). We get a result. This result is now treated as $x|_{i+1}$. So further repeating this iterative method, we will be getting a limiting value where $\lim_{i\to\infty} f(x,i) = c(\text{constant}).$

This series is an infinite series. But it has a limiting value towards the end. We can get the limiting value by considering the expression:

$$u(p,n) = \frac{np}{p-1} \qquad \qquad \dots (1.2)$$

So (1.2) does not depend on *x*, rather depends on *p* and *n*. Now take an example:

Ex. 1.1: Suppose we take a random set, such as x = 2341, p = 2 and n = 3.

So
$$f(x, i) = \left(\frac{x}{p} + n\right)_i = \left(\frac{2341}{2} + 3\right)_i$$
 for $i = 1$

From the expression(1.2) you can previously predict the limiting value of the series, which will be $\frac{3\times 2}{2-1} = 6$

Now if you take 9 digits after decimal point, the series will be: $(2341/2 + 3)_1 = 1173.5$

 $(1173 \cdot 5/2 + 3)_2 = 589.75$

 $(589 \cdot 75/2 + 3)_3 = 297.875$ and so on. Next results will be:

151.9375	for $i = 4$
78.96875	for $i = 5$
42.484375	for $i = 6$
24.2421875	for $i = 7$
15.12109375	for $i = 8$
10.56054688	for $i = 9$
8.280273438	for $i = 10$
7.140136719	for $i = 11$
6.570068359	for $i = 12$
6.28503418	for $i = 13$
6.14251709	for $i = 14$
6.071258545	for $i = 15$
6.035629272	for $i = 16$
6.017814636	for $i = 17$
6.008907318	for $i = 18$
6.004453659	for <i>i</i> = 19
6.00222683	for $i = 20$
6.001113415	for $i = 21$
6.000556707	for $i = 22$
6.000278354	for $i = 23$
6.000139177	for $i = 24$
6.000069588	for $i = 25$
6.000034794	for $i = 26$
6.000017397	for $i = 27$
6.000008699	for $i = 28$
6.000004349	for $i = 29$
6.000002175	for $i = 30$
6.000001087	for $i = 31$

6.000000544	for $i = 32$
6.000000272	for $i = 33$
6.000000136	for $i = 34$
6.00000068	for $i = 35$
6.00000034	for $i = 36$
6.000000017	for $i = 37$
6.00000008	for $i = 38$
6.000000004	for $i = 39$
6.000000002	for $i = 40$
6.000000001	for $i = 41$
6.000000001	for $i = 42$
6.000000000	for $i = 43$
6.000000000	for $i = 44$
value repeating	
or approx. 6.	

So (1.2) is true analytically.

Ex.1.2: Now take another set for example for f(x,i), x = 123·29, p = 2 and n = 3 and put them into (1.1)

Here also our predicted result will be $\frac{3\times 2}{2-1} = 6$, as seen earlier.

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 ${\sf ISSN}$ 2229-5518

So the results will be:

$$\left(\frac{123\cdot 29}{2} + 3\right) = 64\cdot 645$$
 for $i = 1$

Next iterative results v	rill box
35·3225	for $i = 2$
20.66125	for $i = 2$
13.330625	for $i = 3$
9.6653125	for $i = 4$
7·83265625	for $i = 5$
6.916328125	for $i = 0$
6.458164063	for $i = 7$
6·229082031	for $i = 9$
6·114541016	for $i = 9$ for $i = 10$
6·057270508	for $i = 10$ for $i = 11$
6·028635254	
	for $i = 12$
6·014317627 6·007158813	for $i = 13$
	for $i = 14$
6·003579407	for $i = 15$
6·001789703	for $i = 16$
6.000894852	for $i = 17$
6.000447426	for $i = 18$
6.000223713	for $i = 19$
6.000111856	for $i = 20$
6·000055928	for $i = 21$
6.000027964	for $i = 22$
6.000013982	for $i = 23$
6.000006991	for $i = 24$
6.000003496	for $i = 25$
6.000001748	for $i = 26$
6.00000874	for $i = 27$
6.00000437	for $i = 28$
6.00000218	for $i = 29$
6.000000109	for $i = 30$
6.000000055	for $i = 31$
6.00000027	for $i = 32$
6.000000014	for $i = 33$
6.000000007	for $i = 34$
6.000000003	for $i = 35$
6.00000002	for $i = 36$
6.000000001	for $i = 37$
6.000000000	for $i = 38$
6.000000000	for $i = 39$
value repeating	
or approx. 6.	

So (1.2) is true analytically whatever x may be.

Ex.1.3: Now we take another example:

$$f(x,i) = \left(\frac{x}{p} + n\right)_i$$
 for $x = 1523, p = 121, n = 45$

The prediction for answer is: $\frac{45 \times 121}{121-1} = 45.375$

Now let's see, $(1523/121 + 45)_i$ The iterative results are:57.58677686for i = 145.47592378for i = 2

45.37583408	for $i = 3$
45.37500689	for $i = 4$
45.37500006	for $i = 5$
45.375	for $i = 6$
45.375	for $i = 7$
value repeating	

58 56 54 52 f(x,i) --> 50 48 X: 6 Y: 45.38 46 44 L 1 2 4 i-> 3 6 5 Fig.4. Output response of Ex.1.3

Ex.1.4: Now we are taking another different example:

$$f(x,i) = \left(\frac{x}{p} + n\right)_i$$
 for $x = 189.34, p = -19, n = -6$

Predicted answer is: $\frac{(-6)\times(-19)}{(-19-1)} = -5.7$

Now let's see, $\left(\frac{189^{\cdot}34}{-19}\right) - 6$

The iterative results are:

-15.96526316	for $i = 1$
-5.159722992	for $i = 2$
-5.728435632	for $i = 3$
-5.698503388	for $i = 4$
-5.700078769	for $i = 5$
-5.699995854	for $i = 6$
-5.700000218	for $i = 7$
-5.699999989	for $i = 8$
-5.700000001	for $i = 9$
-5.7	for $i = 10$
-5.7	for $i = 11$
value repeating	

Then our prediction was right and exact in all the cases. Some limiting values for real variable p :

Take p be 1,2,3 and so on and n be another real variable. Then the results will be:

for $p = 2 \rightarrow 2 \times n \times \frac{1}{1}$ [' \rightarrow ' indicates the limiting value] for $p = 3 \rightarrow 3 \times n \times \frac{1}{2}$ for $p = 4 \rightarrow 4 \times n \times \frac{1}{2}$ for $p = 5 \rightarrow 5 \times n \times \frac{1}{4}$ for $p = 6 \rightarrow 6 \times n \times \frac{1}{5}$ for $p = 7 \rightarrow 7 \times n \times \frac{1}{6}$

for
$$p = 8 \rightarrow 8 \times n \times \frac{1}{7}$$

for $p = 9 \rightarrow 9 \times n \times \frac{1}{8}$

for $p = 10 \rightarrow 10 \times n \times \frac{1}{2}$ and so on...

Here p = 1 is not allowed as the term $\frac{1}{1-1} = \frac{1}{0}$ is not allowed.

So, for f(x,i) be the iterative function of random variable x and *i* be the order of iteration and is defined as f(x, i + 1) =f(f(x,i), i+1), then $\lim_{i\to\infty} f(x,i) = \text{constant}$. So this is an example of limiting progression.

2.2 Type II

Limiting Progressive Function:

$$f(x,i) = \left(p \times (x)^{\frac{1}{n}}\right) \text{ where } x \in R - \{0\}, p \in R - \{0\}, n \\ \in R - [-1,+1], i \in I$$

Predicting Expression:

$$u(p,n) = \pm (|p|)^{\frac{n}{n-1}}$$

Form:

$$f(x,i) = \left(p \times (x)^{\frac{1}{n}}\right)_i$$
 where $x \in R - \{0\}$ is a random variable,

 $p \in R - \{0\}$ is a real constant,

 $n \in R - [-1, +1]$ is a real constant,

 $i \in I$ is the order of iteration.

... (2.1) Here also we begin with *x* as a random variable, then apply it to (2.1). We get a value of f(x, i). This result now will be treated as next x. Further we are going to apply it to (2.1) and so on and so forth.

This series also has no end; rather it has a limiting value. We can get the limiting value by considering the following expression:

$$u(p,n) = \pm (|p|)^{\frac{n}{n-1}}$$
 ... (2.2)

So (2.2) does not depend on *x*, rather depends on *p* and *n* and sign of *x*.

Let's consider different cases:

Case (1): x > 0, p > 0, n > 1In this case the limiting value will be:

$$u(p,n) = (p)^{\frac{n}{n-1}}$$
 ... (2.3)

Let's take some examples.

Ex.2.1: Initialize
$$f(x, i) = \left(p \times (x)^{\frac{1}{n}}\right)_i$$
 for $x = 23, p = 2, n = 3$

International Journal of Scientific & Engineering ResearchVolume 3, Issue 9, September-2012 ISSN 2229-5518

So predicted answer is:

$$(2)^{\frac{3}{3-1}} = 2^{\frac{3}{2}} = 2.828427125$$

Now let's calculate f(x, i) for different values of i.

The iterative results will be:	
5.68773396	for $i = 1$
3.570067442	for $i = 2$
3.056718667	for $i = 3$
2.902564095	for $i = 4$
2.852926624	for $i = 5$
2.836570158	for $i = 6$
2.831138868	for i = 7
2.829330751	for $i = 8$
2.828728301	for i = 9
2.828527513	for $i = 10$
2.828460587	for $i = 11$
2.828438279	for <i>i</i> = 12
2.828430843	for <i>i</i> = 13
2.828428364	<i>for</i> $i = 14$
2.828427538	<i>for i</i> = 15
2.828427262	<i>for i</i> = 16
2.828427171	for <i>i</i> = 17
2.82842714	for $i = 18$
2.82842713	for <i>i</i> = 19
2.828427126	<i>for i</i> = 20
2.828427125	for <i>i</i> = 21
2.828427125	for <i>i</i> = 22
value repeatin	g

 f_{i} f_{i

So (2.3) is proved analytically. If we take x = 1345, p = 2, n = 3Here also the limiting value will be 2.828427125 for i = 22. So (2.3) is true always for a single set of {p, n}.

Ex.2.2: Now let's take another example: Take $x=27\cdot345$, $p=12\cdot81$, $n=2\cdot9$ Our predicted answer will be:

$$(12.81)^{\left(\frac{2.9}{2.9-1}\right)} = (12.81)^{\left(\frac{2.9}{1.9}\right)} = 49.0308841$$

40.08891269 for i = 145.74210241 for i = 2for i = 347.87093724 48.62776152 for i = 4 $48 \cdot 89150021$ for i = 5 $48 \cdot 98277586$ for i = 649.01428972 for i = 749.02516127 for i = 8for i = 949.02891064 for i = 1049.03020359 49.03064944 *for* i = 1149.03080319 *for* i = 12*for* i = 1349.0308562 49.03087448 *for* i = 14*for* i = 1549.03088079 49.03088296 *for* i = 16*for* i = 1749.03088371 49.03088397 *for* i = 1849.03088406 *for* i = 19*for* i = 2049.03088409 49.0308841 *for* i = 2149.0308841 *for* i = 22

The iterative results will be:

Now let's calculate f(x, i) for different values of *i*.

...value repeating

So (2.3) is proved analytically.

Case (2): x < 0, p > 0, n odd integer In this case the limiting value will be:

$$u(p,n) = -(p)^{\frac{n}{n-1}}$$
 ... (2.4)

Ex.2.3: Take an example: $x = -12 \cdot 67$, p = 3.5, n = 3 (odd taken).

Now the expression will be:

$$f(x,i) = \left(3.5 \times (-12.67)^{\frac{1}{3}}\right)_{i}$$

IJSER © 2012 http://www.ijser.org

The iterative results will be:

The nerative results will	i be.
-8.159438048	for $i = 1$
-7.04619721	for $i = 2$
-6.709955537	for $i = 3$
-6.601479188	for $i = 4$
-6.565711522	for $i = 5$
-6.553832083	for $i = 6$
-6.549877049	for $i = 7$
-6.548559235	for $i = 8$
-6.548120022	for $i = 9$
-6.547973624	for $i = 10$
-6.547924826	for $i = 11$
-6.54790856	<i>for</i> $i = 12$
-6.547903138	for $i = 13$
-6.54790133	for $i = 14$
-6.547900728	for $i = 15$
-6.547900527	for $i = 16$
-6.54790046	for $i = 17$
-6.547900438	for $i = 18$
-6.547900431	for i = 19
-6.547900428	for $i = 20$
-6.547900427	for $i = 21$
-6.547900427	for <i>i</i> = 22
value repeating	

So (2.4) is proved analytically.

Ex.2.4: Take another example: $x = -12 \cdot 67, p = 3.5, n = 2$ (even taken). So the expression will be:

 $\left(3.5 \times (-12.67)^{\frac{1}{2}}\right)_i$ is not defined.

Case (3):p < 0, n odd integer Here the limiting value should be:

 $u(p,n) = \pm |p|^{\frac{n}{n-1}} \dots (2.5)$

In this case the positive and negative limiting values will gradually come one after one and the system will be oscillatory.

Ex.2.5: Take an example: x = 2, p = -2, n = 3Predicted answer is:

$$\pm |-2|^{\frac{3}{2}} = \pm 2.828427125$$

Now the iterative results for f(x, i) will be as follows:

i tow the neturive rea	
-2.5198421	for $i = 1$
2.72158	for $i = 2$
-2.792353286	for $i = 3$
2.816351026	for $i = 4$
-2.824396016	for $i = 5$
2.827082783	for $i = 6$
-2.82797894	for $i = 7$
2.828277722	for $i = 8$
-2.828377323	for $i = 9$
2.828410524	$for \ i = 10$
-2.828421591	for $i = 11$
2.82842528	<i>for</i> $i = 12$
-2.82842651	for $i = 13$
2.82842692	for $i = 14$
-2.828427056	<i>for</i> $i = 15$
2.828427102	<i>for</i> $i = 16$
-2.828427117	<i>for</i> $i = 17$
2.828427122	for $i = 18$
-2.828427124	for $i = 19$
2.828427124	for $i = 20$
-2.828427125	for $i = 21$
2.828427125	for <i>i</i> = 22
-2.828427125	for $i = 23$
2.828427125	for $i = 24$
value repeating	

So (2.4) is proved analytically.

Case (4): n < 0In this case the predicted answer will be as (2·3) i.e.

$$u(p,n)=(p)^{\frac{n}{n-1}}$$

Ex.2.6: Example: x = 2, p = 2, n = -3Predicted answer:

$$(2)^{\frac{-3}{-3-1}} = (2)^{\frac{-3}{-4}} = (2)^{\frac{3}{4}} = 1.681792831$$

And the iterative results for f(x, i) will be:

1.587401052	for $i = 1$
1.714487966	for $i = 2$
1.671033598	for $i = 3$
1.685394614	for $i = 4$
1.680593947	for $i = 5$
1.682192648	for $i = 6$
1.681659579	for $i = 7$
1.68183725	for $i = 8$
1.681778024	for $i = 9$
1.681797766	for $i = 10$
1.681791185	for $i = 11$
1.681793379	<i>for i</i> = 12
1.681792648	for <i>i</i> = 13
1.681792891	for $i = 14$
1.68179281	<i>for</i> $i = 15$
1.681792837	<i>for</i> $i = 16$
1.681792828	for i = 17
1.681792831	for $i = 18$
1.68179283	for <i>i</i> = 19
1.681792831	for <i>i</i> = 20
1.68179283	for <i>i</i> = 21
1.681792831	for i = 22
1.681792831	for <i>i</i> = 23
1.681792831	for $i = 24$
value repeatir	ıg

So prediction in (2.3) is also proved analytically.

But in case of p = 0, $n = \pm 1$ this series cannot be obtained.

So, for f(x,i) be the iterative function of random variable x and i be the order of iteration and is defined as f(x,i+1) = f(f(x,i),i+1), then $\lim_{i\to\infty} f(x,i) = \text{constant.}$ So this is also an example of limiting progression.

2.3 Type III

Limiting Progressive Function: $f(x,i) = (\cos (x))_i$ where $x \in (-\infty, +\infty), i \in I$ Predicting Expression: u = 0.9998477415310881129598107686798

Form:

 $f(x,i) = (\cos(x))_i$ where $x \in (-\infty, +\infty)$ and x is in degree, $i \in I$ is the order of iteration. ... (3.1)

In this case also if we consider x as a random variable like all the previous types, we get a result from (3.1), then the answer again be considered as x and so on. In this case, this series will have a limiting value, which is 0.9998477415310881129598107686798 if we consider 31 digits after decimal point. So,

 $\lim_{\substack{i \to \infty \\ (constant)}} f(x, i) = 0.9998477415310881129598107686798$

Ex.3.1: Now take an example: suppose we take any random variable x = 23.

Then the iterative results will be:

0.92050485345244032739689472330046	for $i = 1$
0.99987094716081078813848034332851	for $i = 2$
0.99984773446360205953437286377479	for $i = 3$
0.99984774153324055527488336319716	for $i = 4$
0.99984774153108745742149048473084	for <i>i</i> = 5
0.99984774153108811315945862281788	for $i = 6$
0.99984774153108811295974996481155	for $i = 7$
0.99984774153108811295981078719796	for $i = 8$
0.99984774153108811295981076867416	for $i = 9$
0.9998477415310881129598107686798	<i>for</i> $i = 10$
0.9998477415310881129598107686798	<i>for</i> $i = 11$
value repeating	

Ex.3.2: Take another example: $x = 2645$	
Then the iterative results will be:	
-0.57357643635104609610803191282616	for $i = 1$
0.99994989238691479899521937732222	for $i = 2$
0.9998477104188857772677217602915	for $i = 3$
0.99984774154056350767740513976426	for $i = 4$
0.99984774153108522717546536452938	for i = 5
0.99984774153108811383869249723479	for $i = 6$
0.99984774153108811295954310034415	for i = 7
0.99984774153108811295981085019969	for $i = 8$
0.99984774153108811295981076865497	for i = 9
0.99984774153108811295981076867981	for $i = 10$
0.9998477415310881129598107686798	for $i = 11$
0.9998477415310881129598107686798	for <i>i</i> = 12
value repeating	

Ex.3.3: Take another example: x = -67The iterative results will be:

0.39073112848927375506208458888909	for $i = 1$
0.99997674699528153455312175786626	for $i = 2$
0.99984770223921958855808301788233	for $i = 3$
0.99984774154305467057989511316751	for $i = 4$
0.99984774153108446847789970519695	for $i = 5$
0.99984774153108811406975807530513	for $i = 6$
0.99984774153108811295947272803272	for $i = 7$
0.99984774153108811295981087163197	for $i = 8$
0.99984774153108811295981076864845	for $i = 9$
0.99984774153108811295981076867981	<i>for</i> $i = 10$
0.9998477415310881129598107686798	for $i = 11$
0.9998477415310881129598107686798	<i>for</i> $i = 12$
value repeating	

...value repeating

Then our prediction was exactly right. This is proved now by analytical method.

So, as we can see

cos(0'9998477415310881129598107686798)

= 0.9998477415310881129598107686798

In this case we can say cos(x) = xwhere x = 0.9998477415310881129598107686798

This type of series is not applicable for $\sin x$, $\tan x$, or other trigonometric expression.

So, for f(x,i) be the iterative function of random variable x and i be the order of iteration and is defined as f(x,i+1) = f(f(x,i),i+1), then $\lim_{i\to\infty} f(x,i) = \text{constant.}$ So this is also an example of limiting progression.

2.4 Type IV

Limiting Progressive Function: $f(x,i) = (\tan^{-1} x)_i$ where $x \in (-\infty, +\infty) - \{0\}, i \in I$ Predicting Expression: $u = \pm 89.35883917$

Form:

 $f(x,i) = (\tan^{-1} x)_i$ where $x \in (-\infty, +\infty) - \{0\}$ is a value, not in degree, $i \in I$ is the order of iteration. ... (4.1)

In this case also if we consider x as a random variable, we get a result from (4.1) for i - th iteration, then this value is again used as x for i + 1 - st iteration and so on. In this case also this series will have a limiting value which is \pm 89·35883917 if we consider 8 digits after point. If x be positive, the limiting value will be positive and if x be negative, the limiting value will be negative.

Ex.4.1: Now let's take an example: x = 45Then the iterative results will be:

88.72696998	for $i = 1$
89.35427352	for $i = 2$
89.35880641	for $i = 3$
89.35883893	for $i = 4$
89.35883916	for $i = 5$

8

9

$\begin{array}{ll} 89 \cdot 35883917 & for \ i = 6 \\ 89 \cdot 35883917 & for \ i = 7 \\ \end{array}$

Ex.4.2: Take another example: x = 23134Then the iterative results will be:

Then the iter	alive results w
89.99752331	for $i = 1$
89.36338891	for $i = 2$
89.35887181	for $i = 3$
89.3588394	for $i = 4$
89.35883917	<i>for i</i> = 5
89.35883917	for $i = 6$
1	

...value repeating

So, this prediction was true.

As we can see $\tan^{-1}(\pm 89.35883917) = \pm 89.35883917$ So, we can say $\tan^{-1}(x) = x$ where $x = \pm 89.35883917$ This type of series is not applicable for $\sin^{-1} x$, $\cos^{-1} x$, or other inverse trigonometric expression.

So, for f(x, i) be the iterative function of random variable x and i be the order of iteration and is defined as f(x, i + 1) = f(f(x, i), i + 1), then $\lim_{i \to \infty} f(x, i) = \text{constant}$.

So this is also an example of limiting progression.

2.5 Type V

Limiting Progressive Function:

$$f(x,i) = \left(\frac{\sin x}{x}\right)_i \text{ where } x \in R - \{0\}, i \in I$$

Predicting Expression: u = 0.017453292

Limiting Progressive Function:

$$f(x,i) = \left(\frac{\tan x}{x}\right)_i \text{ where } x \in R - \{0\}, i \in I$$

Predicting Expression:

$$u = 0.017453293$$

Form(I):

$$f(x,i) = \left(\frac{\sin x}{x}\right)_i$$
 where $x \in R - \{0\}$,

 $i \in I$ is the order of iteration.

... (5.1)

In this case also if we consider x as a random variable, we get a result from (5.1) for i - th iteration, then this value is again used as x for i + 1 - st iteration and so on. In this case also this series will have a limiting value which is 0.017453292 if we consider 9 digits after decimal point.

Ex.5.1.1: Now consider an example: Let's take x = 123The successive iterative results will be: 0.006218450 = for i = 1

0.006818459 for i = 1

IJSER © 2012 http://www.ijser.org

```
0.017453292 for i = 2
0.017453292 for i = 3
and thus so on.
```


So, it is now clear that, this series has a limiting value: 0.017453292.

Ex.5.1.2: Now let's take another example: x = -0.785The iterative results will be:

0.017452746	for $i = 1$
0.017453292	for $i = 2$
0.017453292	for $i = 3$

Here also the limiting value is 0.017453292. Actually this value is: 0.017453292250022980737699843973 considering 31 digits after decimal point.

Form (II):

$$f(x,i) = \left(\frac{\tan x}{x}\right)_i$$
 where $x \in R - \{0\}$,

 $i \in I$ is the order of iteration.

In this case also if we consider x as a random variable, we get a result from (5.2) for i - th iteration, then this value is again used as x for i + 1 - st iteration and so on. In this case also this series will have a limiting value which is 0.017453293 if you consider 9 digits after point.

Ex.5.2.1: Now consider an example: Let's take x = 123The successive results will be:= -0.012519227 for i = 10.017453292 for i = 20.017453293 for i = 3

So, it is now clear that, this series has a limiting value 0.017453293.

Ex.5.2.2: Now let's take another example: x = -0.785The iterative results will be: 0.017454384 for i = 10.017453293 for i = 20.017453293 for i = 3

IJSER © 2012 http://www.ijser.org

... (5.2)

Here also the limiting value is 0.017453293.

Actually this value is: 0.017453293059783998466834689798considering 31 digits after decimal point. However, we have seen than these limiting values of those two series are about same (up to 8 digits after decimal point).

Moreover $\left(\frac{\cos x}{x}\right)$ series has no such property.

So, for f(x, i) be the iterative function of random variable x and i be the order of iteration and is defined as f(x, i + 1) = f(f(x, i), i + 1), then $\lim_{i \to \infty} f(x, i) = \text{constant}$.

So these are also the examples of limiting progression. There are many other types of limiting progression.

3 APPLICATION OF LIMITING PROGRESSION IN THE CONTEXT OF TRANSFER FUNCTION OF A FEEDBACK SYSTEM

For type I: $f(x,i) = (x/p + n)_i$ where $x \in R$, $p \in R - \{0,1\}$, $n \in R - \{0\}, i \in I$

In reference with Ex.1.1: $x|_{i=0} = 2341$, p = 2 and n = 3.

Here $x|_{i=0}$ is the initial input and $x|_i$ are the consecutive inputs and f(x,i) is the *i*-th output of the system. Again *p* and *n* are the independent parameters of the feedback system. Here the system is called the feedback system as the output is fully or partially used as input to the same system. f(x,i) is the transfer function of the feedback system.

Here from the iterative outputs of the system, it is clear that the limiting value (final value) does not depend on the input or the output of the system rather depends on the parameters of the system. So if we have only pand n, we will have the final value of the system, whatever be the input of the system. So we can predict the system. In these two cases the predicted value is always 6.

We have another output parameter of the system which is *i*. *i* is equivalent to 'time' in time domain analysis of the system. Here the value of *i* where the limiting value is attained, is not only depends on *p* and *n* but also the $x|_{i=0}$ i.e. the input of the system. In reference with Ex.1.1 and Ex. 1.2, the value of *p* and *n* are same in both case i.e. 2 and 3 respectively. But while reaching the limiting value, the value of *i* is 44 and 39 in the two different cases respectively, where the inputs were 2341 and 123.29 respectively. Hence we can conclude that the value of *i* also depends on initial input of the system.

For type II:
$$f(x,i) = \left(p \times (x)^{\frac{1}{n}}\right)_i$$
 where $x \in R - \{0\}, p \in R - \{0\}, n \in R - [-1,+1], i \in I$

Case (1): In reference with Ex.2.1: $x|_{i=0} = 23, p = 2, n = 3$

In this case also, we can conclude in the same way through the essence of the previous discussion, that p and n are acting as independent parameters of the feedback system and i is acting as dependent parameter which is dependent on p, n and $x|_{i=0}$. As in Ex.2.1 we have discussed using different values of $x|_{i=0}$

viz. 23 and 1345, but in both cases, p = 2, n = 3. We have seen that the limiting value of the progression is 2.828427125 in both cases.

Case (2): Here *n* has a limitation while x < 0, it should be odd always, because *j* —th root of a negative real number is always imaginary when *j* is even integer. The rest of the conclusion is same.

Case (3): When p < 0, the feedback system will have special characteristics. The system will be oscillatory in nature, but not like positive feedback. The limiting value will have the same amplitude both in positive and negative side of *i*-axis (time axis). So this system will have marginal stability (much like sinusoidal in nature). As in Ex.2.5 $x|_{i=0} = 2$, p = -2, n = 3, the limiting value is ± 2.828427125 .

Case (4): When n < 0, a single limiting value is attained, from both side of *i*-axis. Initially the system will have a decaying oscillating nature, and gradually it will attain a limiting value. As described in Ex.2.6. $x|_{i=0} = 2$, p = 2, n = -3, the system will attain a limiting value of 1.681792831 after passing through an initial decaying oscillation.

For type III: $f(x, i) = (\cos (x))_i$ where $x \in (-\infty, +\infty), i \in I$,

typeIV: $f(x,i) = (\tan^{-1} x)_i$ where $x \in (-\infty, +\infty) - \{0\}, i \in I$ and type V: $f(x,i) = \left(\frac{\sin x}{x}\right)_i$ where $x \in R - \{0\}, i \in I$

$$f(x,i) = \left(\frac{\tan x}{x}\right)_i$$
 where $x \in R - \{0\}, i \in I$

there is no independent parameter of these types of feedback systems. *i* is only acting as dependent parameter which is dependent only on $x|_{i=0}$ i.e. the initial value of x. These are all the examples of constant limiting progression, as whatever be the initial input condition, the final output of the system is always same. So we can't control the output of these systems.

4 CONCLUSIONS AND FUTURE WORKS

Prediction of output and controlling of a system based on the prediction can be done using the mathematical study of the system. This study is not complete yet, as the expression of i where the limiting value is attained is not clear yet. As i is dependent on the system parameter and the initial input value, so it must have an expression. Working on these expressions requires time domain analysis of the system. So this paper gives an initial concept and steps towards the mathematical study. All the software simulations are done in MATLAB.

ACKNOWLEDGMENT

I wish to thank my college Future Institute of Engineering and Management for inspiring and encouraging me as an undergraduate engineering student.

REFERENCES

- F. Golnaraghi, B.C.Kuo, Automatic Control Systems, Ninth Edition, John Wiley & Sons Inc, 2010.
- [2] A. K. Mandal, Introduction to Control Engineering, Modeling, Analysis

and Design, New Age International Publishers, 2006.