Mathematical Time Domain Study of Negative Feedback System Using Limiting Progression

Arindam Bose

Abstract

Every stable feedback system has certain finite limiting value with respect to time. This paper describes a mathematical analytical study for stable negative feedback system with the help of limiting progressions. Some limiting progressions described in this paper have a finite limiting value which can be predicted previously using the characteristics parameters of the system by analytical method. Some of these parameters are independent and primary properties of the system itself. The final value of the feedback system having transfer function as a limiting progression can be predicted and sometimes be controlled using the parametric solution.

Index Terms-Control system, Limiting progression, Limiting progressive function, Negative feedback system, Predicting expression, Transfer function.

1 Introduction

M
OSTof the negative feedback systems are stable with respect to time, as they converge to a finite limiting value. And marginally stable feedback systems are bounded-oscillatory in nature.Fig. 1 describes a general configuration a negative feedback system.

Fig.1.a. General Representation of Negative Feedback System

Fig.1.b. Equivalent Representation of Negative Feedback System

We know that every negative feedback system has a damping coefficient (ζ) depending which they are classified into three sections:

[^0]a. Under-damped system,
b. Critically damped system and
c. Over-damped system.

Now in this paper we will discuss about the mathematical study of these three systems with the help of Limiting Progressions.

Definition of Limiting Progressions: There are some sorts of series which are defined by a single valued iterative function (expression), where the result (dependent variable) is again used as the independent variable in the same expression and a limiting value can be reached as we go for infinite times of iteration. This type of series can be called as LIMITING PROGRESSION. So, in Limiting Progression the output is totally feedback to the input, NOT partially. Rather we can say that the output in certain state is totally put as the input of the next state.
i.e. if $f(x, i)$ is the iterative function of random variable x and i be the order of iteration and is defined as $f(x, i+1)=$ $f(f(x, i), i+1)$ and $\lim _{i \rightarrow \infty} f(x, i)=c$ (constant), then $f(x, i)$ is called LIMITING PROGRESSIVE FUNCTION.

And the equation u (system parameters) which predicts this constant term c is called PREDICTING EXPRESSION.

Such that u (system parameters) $=c$

2 Discussion about Some Types of Limiting Progressions

Let us consider some types of limiting progressions.

2.1 Type I

Limiting Progressive Function:

$$
\begin{gathered}
f(x, i)=(x / p+n)_{i} \text { where } x \in R, p \in R-\{0,1\}, \\
n \in R-\{0\}, i \in I
\end{gathered}
$$

Where R represents set of REAL numbers and I represents set of INTEGERS.

Predicting Expression: $u(p, n)=\frac{n p}{p-1}$
Form:
$f(x, i)=\left(\frac{x}{p}+n\right)_{i}$ where $x \in R$ is a random variable,
$p \in R-\{0,1\}$ is a real constant,
$n \in R-\{0\}$ is a real constant,
$i \in I$ isthe order of iteration.
This is one of the limiting series. Here we begin with $\left.x\right|_{i}$ as a random variable, then apply to (1.1). We get a result. This result is now treated as $\left.x\right|_{i+1}$. So further repeating this iterative method, we will be getting a limiting value where
$\lim _{i \rightarrow \infty} f(x, i)=c$ (constant).
This series is an infinite series. But it has a limiting value towards the end. We can get the limiting value by considering the expression:

$$
\begin{equation*}
u(p, n)=\frac{n p}{p-1} \tag{1.2}
\end{equation*}
$$

So (1.2) does not depend on x, rather depends on p and n.
Now take an example:
Ex. 1.1: Suppose we take a random set, such as $x=2341$, $p=2$ and $n=3$.

Sof $(x, i)=\left(\frac{x}{p}+n\right)_{i}=\left(\frac{2341}{2}+3\right)_{i}$ for $i=1$
From the expression(1.2) you can previously predict the limiting value of the series, which will be $\frac{3 \times 2}{2-1}=6$

Now if you take 9 digits after decimal point, the series will be: $(2341 / 2+3)_{1}=1173.5$
$(1173 \cdot 5 / 2+3)_{2}=589 \cdot 75$
$(589 \cdot 75 / 2+3)_{3}=297 \cdot 875$ and so on. Next results will be:

$151 \cdot 9375$	for $i=4$
$78 \cdot 96875$	for $i=5$
$42 \cdot 484375$	for $i=6$
$24 \cdot 2421875$	for $i=7$
$15 \cdot 12109375$	for $i=8$
$10 \cdot 56054688$	for $i=9$
$8 \cdot 280273438$	for $i=10$
$7 \cdot 140136719$	for $i=11$
$6 \cdot 570068359$	for $i=12$
$6 \cdot 28503418$	for $i=13$
$6 \cdot 14251709$	for $i=14$
$6 \cdot 071258545$	for $i=15$
$6 \cdot 035629272$	for $i=16$
$6 \cdot 017814636$	for $i=17$
$6 \cdot 008907318$	for $i=18$
$6 \cdot 004453659$	for $i=19$
$6 \cdot 00222683$	for $i=20$
$6 \cdot 001113415$	for $i=21$
$6 \cdot 000556707$	for $i=22$
$6 \cdot 000278354$	for $i=23$
$6 \cdot 000139177$	for $i=24$
$6 \cdot 000069588$	for $i=25$
$6 \cdot 000034794$	for $i=26$
$6 \cdot 000017397$	for $i=27$
$6 \cdot 000008699$	for $i=28$
$6 \cdot 000004349$	for $i=29$
$6 \cdot 000002175$	for $i=30$
$6 \cdot 000001087$	for $i=31$

$151 \cdot 9375$
78
24. 2421875

15•12109375
8. 2805488
$7 \cdot 140136719$
6.570068359
$6 \cdot 28503418$
$6 \cdot 14251709$
6•071258545
$6 \cdot 035629272$
6.017814636
6.008907318
$6 \cdot 004453659$
6.00222683

6•001113415
6•000556707
6•000278354
6.000139177
$6 \cdot 000034794$
6•000017397
6•000008699
$6 \cdot 000002175$
6•000001087
$\begin{aligned} \text { for } i & =4 \\ \text { for } i & =5 \\ \text { for } i & =6 \\ \text { for } i & =7 \\ \text { for } i & =8 \\ \text { for } i & =9 \\ \text { for } i & =10 \\ \text { for } i & =11 \\ \text { for } i & =12 \\ \text { for } i & =13 \\ \text { for } i & =14 \\ \text { for } i & =15 \\ \text { for } i & =16 \\ \text { for } i & =17 \\ \text { for } i & =18 \\ \text { for } i & =19 \\ \text { for } i & =20 \\ \text { for } i & =21 \\ \text { for } i & =22 \\ \text { for } i & =23 \\ \text { for } i & =24 \\ \text { for } i & =25 \\ \text { for } i & =26 \\ \text { for } i & =27 \\ \text { for } i & =28 \\ \text { for } i & =29 \\ \text { for } i & =30 \\ \text { for } i & =31\end{aligned}$

$6 \cdot 000000544$	for $i=32$
$6 \cdot 000000272$	for $i=33$
$6 \cdot 000000136$	for $i=34$
$6 \cdot 000000068$	for $i=35$
$6 \cdot 000000034$	for $i=36$
$6 \cdot 000000017$	for $i=37$
$6 \cdot 000000008$	for $i=38$
$6 \cdot 000000004$	for $i=39$
$6 \cdot 000000002$	for $i=40$
$6 \cdot 000000001$	for $i=41$
$6 \cdot 000000001$	for $i=42$
$6 \cdot 000000000$	for $i=43$
$6 \cdot 000000000$	for $i=44$

... value repeating or approx. 6.
for $i=32$
for $i=33$
for $i=34$
for $i=35$
for $i=36$
or $i=37$
for $i=38$
for $i=40$
for $i=41$
for $i=43$
for $i=44$

Fig.2.a. Output response of Ex.1.1

Fig.2.b. More detailed and zoomed in output response of Ex.1.1

So (1.2) is true analytically.
Ex.1.2: Now take another set for example for $f(x, i), x=$ 123.29, $p=2$ and $n=3$ and put them into (1.1)

Here also our predicted result will be $\frac{3 \times 2}{2-1}=6$, as seen earlier.

So the results will be:
$\left(\frac{123 \cdot 29}{2}+3\right)=64 \cdot 645$ for $i=1$
Next iterative results will be:

35-3225
20.66125
$13 \cdot 330625$
9•6653125
7•83265625
$6 \cdot 916328125$
$6 \cdot 458164063$
6.229082031

6•114541016
6.057270508
6.028635254
$6 \cdot 014317627$
$6 \cdot 007158813$
$6 \cdot 003579407$
6•001789703
6•000894852
6•000447426
6.000223713
$6 \cdot 000111856$
$6 \cdot 000055928$
6•000027964
6.000013982
$6 \cdot 000006991$
6•000003496
6•000001748
$6 \cdot 000000874$
$6 \cdot 000000437$
$6 \cdot 000000218$
6•000000109
6.000000055

6•000000027
$6 \cdot 000000014$
$6 \cdot 000000007$
$6 \cdot 000000003$
$6 \cdot 000000002$
$6 \cdot 000000001$
6•000000000
6•000000000
...value repeating
or approx. 6.
for $i=2$
for $i=3$
for $i=4$
for $i=5$
for $i=6$
for $i=7$
for $i=8$
for $i=9$
for $i=10$
for $i=11$
for $i=12$
for $i=13$
for $i=14$
for $i=15$
for $i=16$
for $i=17$
for $i=18$
for $i=19$
for $i=20$
for $i=21$
for $i=22$
for $i=23$
for $i=24$
for $i=25$
for $i=26$
for $i=27$
for $i=28$
for $i=29$
for $i=30$
for $i=31$
for $i=32$
for $i=33$
for $i=34$
for $i=35$
for $i=36$
for $i=37$
for $i=38$
for $i=39$

Fig.3. Output response of Ex.1.2
So (1.2) is true analytically whatever x may be.
Ex.1.3: Now we take another example:
$f(x, i)=\left(\frac{x}{p}+n\right)_{i}$ for $x=1523, p=121, n=45$
The prediction for answer is: $\frac{45 \times 121}{121-1}=45.375$
Now let's see, $(1523 / 121+45)_{i}$
The iterative results are:

57.58677686	for $i=1$
$45 \cdot 47592378$	for $i=2$
45.37583408	for $i=3$
45.37500689	for $i=4$
45.37500006	for $i=5$
45.375	for $i=6$
45.375	for $i=7$

...value repeating

Fig.4. Output response of Ex.1.3

Ex.1.4: Now we are taking another different example:
$f(x, i)=\left(\frac{x}{p}+n\right)_{i}$ for $x=189 \cdot 34, p=-19, n=-6$
Predicted answer is: $\frac{(-6) \times(-19)}{(-19-1)}=-5.7$
Now let's see, $\left(\frac{189 \cdot 34}{-19}\right)-6$
The iterative results are:

$-15 \cdot 96526316$	for $i=1$
$-5 \cdot 159722992$	for $i=2$
$-5 \cdot 728435632$	for $i=3$
$-5 \cdot 698503388$	for $i=4$
$-5 \cdot 700078769$	for $i=5$
$-5 \cdot 699995854$	for $i=6$
$-5 \cdot 700000218$	for $i=7$
$-5 \cdot 699999989$	for $i=8$
$-5 \cdot 700000001$	for $i=9$
$-5 \cdot 7$	for $i=10$
$-5 \cdot 7$	for $i=11$
\ldots value repeating	

Fig.5. Output response of Ex.1.4

Then our prediction was right and exact in all the cases.
Some limiting values for real variable p :
Take p be 1,2,3 and so on and n be another real variable. Then the results will be:
for $p=2 \rightarrow 2 \times n \times \frac{1}{1} \quad\left[{ }^{\prime} \rightarrow\right.$ indicates the limiting value $]$
for $p=3 \rightarrow 3 \times n \times \frac{1}{2}$
for $p=4 \rightarrow 4 \times n \times \frac{1}{3}$
for $p=5 \rightarrow 5 \times n \times \frac{1}{4}$
for $p=6 \rightarrow 6 \times n \times \frac{1}{5}$
for $p=7 \rightarrow 7 \times n \times \frac{1}{6}$
for $p=8 \rightarrow 8 \times n \times \frac{1}{7}$
for $p=9 \rightarrow 9 \times n \times \frac{1}{8}$
for $p=10 \rightarrow 10 \times n \times \frac{1}{9}$ and so on...
Here $p=1$ is not allowed as the term $\frac{1}{1-1}=\frac{1}{0}$ is not allowed.
So, for $f(x, i)$ be the iterative function of random variable x and i be the order of iteration and is defined as $f(x, i+1)=$ $f(f(x, i), i+1)$, thenlim $\lim _{i \rightarrow \infty} f(x, i)=$ constant.
So this is an example of limiting progression.

2.2 Type II

Limiting Progressive Function:

$$
\begin{gathered}
f(x, i)=\left(p \times(x)^{\frac{1}{n}}\right)_{\in} \text { wherex } \in R-\{0\}, p \in R-\{0\}, n \\
\in R-1,+1], i \in I
\end{gathered}
$$

Predicting Expression:

$$
u(p, n)= \pm(|p|)^{\frac{n}{n-1}}
$$

Form:
$f(x, i)=\left(p \times(x)^{\frac{1}{n}}\right)_{i}$ where $x \in R-\{0\}$ is a random variable,
$p \in R-\{0\}$ is a real constant,
$n \in R-[-1,+1]$ is a real constant,
$i \in I$ is the order of iteration.
Here also we begin with x as a random variable, then apply it to (2.1). We get a value of $f(x, i)$. This result now will be treated as next x. Further we are going to apply it to (2.1) and so on and so forth.

This series also has no end; rather it has a limiting value. We can get the limiting value by considering the following expression:
$\mathrm{u}(\mathrm{p}, \mathrm{n})= \pm(|p|)^{\frac{n}{n-1}}$

So (2.2) does not depend on x, rather depends on p and n and sign of x.
Let's consider different cases:
Case (1): $x>0, p>0, n>1$
In this case the limiting value will be:
$u(p, n)=(p)^{\frac{n}{n-1}}$
Let's take some examples.
Ex.2.1: Initialize $f(x, i)=\left(p \times(x)^{\frac{1}{n}}\right)_{i}$ for $x=23, p=2, n=3$

So predicted answer is:

$$
(2)^{\frac{3}{3-1}}=2^{\frac{3}{2}}=2 \cdot 828427125
$$

Now let's calculate $f(x, i)$ for different values of i.
The iterative results will be:

$5 \cdot 68773396$	for $i=1$
$3 \cdot 570067442$	for $i=2$
$3 \cdot 056718667$	for $i=3$
$2 \cdot 902564095$	for $i=4$
$2 \cdot 852926624$	for $i=5$
$2 \cdot 836570158$	for $i=6$
$2 \cdot 831138868$	for $i=7$
$2 \cdot 829330751$	for $i=8$
$2 \cdot 828728301$	for $i=9$
$2 \cdot 828527513$	for $i=10$
$2 \cdot 828460587$	for $i=11$
$2 \cdot 828438279$	for $i=12$
$2 \cdot 828430843$	for $i=13$
$2 \cdot 828428364$	for $i=14$
$2 \cdot 828427538$	for $i=15$
$2 \cdot 828427262$	for $i=16$
$2 \cdot 828427171$	for $i=17$
$2 \cdot 82842714$	for $i=18$
$2 \cdot 82842713$	for $i=19$
$2 \cdot 828427126$	for $i=20$
$2 \cdot 828427125$	for $i=21$
$2 \cdot 828427125$	for $i=22$

...value repeating

Fig.6. Output response of Ex.2.1

So (2.3) is proved analytically.
If we take $x=1345, p=2, n=3$
Here also the limiting value will be $2 \cdot 828427125$ for $i=22$. So (2.3) is true always for a single set of $\{p, n\}$.

Ex.2.2: Now let's take another example:
Take $x=27 \cdot 345, p=12 \cdot 81, n=2 \cdot 9$
Our predicted answer will be:

Now let's calculate $f(x, i)$ for different values of i.
The iterative results will be:

$40 \cdot 08891269$	for $i=1$
$45 \cdot 74210241$	for $i=2$
$47 \cdot 87093724$	for $i=3$
$48 \cdot 62776152$	for $i=4$
$48 \cdot 89150021$	for $i=5$
$48 \cdot 98277586$	
$49 \cdot 01428972$	for $i=6$
$49 \cdot 02516127$	for $i=7$
$49 \cdot 02891064$	for $i=9$
$49 \cdot 03020359$	for $i=10$
$49 \cdot 03064944$	for $i=11$
$49 \cdot 03080319$	for $i=12$
$49 \cdot 0308562$	for $i=13$
$49 \cdot 03087448$	for $i=14$
$49 \cdot 03088079$	for $i=15$
$49 \cdot 03088296$	for $i=16$
$49 \cdot 03088371$	for $i=17$
$49 \cdot 03088397$	for $i=18$
$49 \cdot 03088406$	for $i=19$
$49 \cdot 03088409$	for $i=20$
$49 \cdot 0308841$	for $i=21$
$49 \cdot 0308841$	for $i=22$
$\cdots .0 a l u e$ repeating	

Fig.7. Output response of Ex.2.2

So (2.3) is proved analytically.
Case (2): $x<0, p>0, n$ odd integer
In this case the limiting value will be:
$u(p, n)=-(p)^{\frac{n}{n-1}}$

Ex.2.3: Take an example: $x=-12 \cdot 67, p=3.5, n=3$ (odd taken).
Now the expression will be:

$$
f(x, i)=\left(3.5 \times(-12.67)^{\frac{1}{3}}\right)_{i}
$$

$$
(12.81)^{\left(\frac{2.9}{2.9-1}\right)}=(12.81)^{\left(\frac{2.9}{1.9}\right)}=49.0308841
$$

Predicted answer: $-(3 \cdot 5)^{3 / 2}=-6 \cdot 547900427$

The iterative results will be:

$-8 \cdot 159438048$	for $i=1$
$-7 \cdot 04619721$	for $i=2$
$-6 \cdot 709955537$	for $i=3$
$-6 \cdot 601479188$	for $i=4$
$-6 \cdot 565711522$	for $i=5$
$-6 \cdot 553832083$	for $i=6$
$-6 \cdot 549877049$	for $i=7$
$-6 \cdot 548559235$	for $i=8$
$-6 \cdot 548120022$	for $i=9$
$-6 \cdot 547973624$	for $i=10$
$-6 \cdot 547924826$	for $i=11$
$-6 \cdot 54790856$	for $i=12$
$-6 \cdot 547903138$	for $i=13$
$-6 \cdot 54790133$	for $i=14$
$-6 \cdot 547900728$	for $i=15$
$-6 \cdot 547900527$	for $i=16$
$-6 \cdot 54790046$	for $i=17$
$-6 \cdot 547900438$	for $i=18$
$-6 \cdot 547900431$	for $i=19$
$-6 \cdot 547900428$	for $i=20$
$-6 \cdot 547900427$	for $i=21$
$-6 \cdot 547900427$	for $i=22$

...value repeating

Fig.8. Output response of Ex.2.3

So (2.4) is proved analytically.
Ex.2.4: Take another example: $x=-12 \cdot 67, p=3.5, n=2$ (even taken).
So the expression will be:
$\left(3.5 \times(-12.67)^{\frac{1}{2}}\right)_{i}$ is not defined.
Case (3): $p<0, n$ odd integer
Here the limiting value should be:

In this case the positive and negative limiting values will gradually come one after one and the system will be oscillatory.
Ex.2.5: Take an example: $x=2, p=-2, n=3$
Predicted answer is:

$$
\pm|-2|^{\frac{3}{2}}= \pm 2.828427125
$$

Now the iterative results for $f(x, i)$ will be as follows:

$-2 \cdot 5198421$	for $i=1$
$2 \cdot 72158$	for $i=2$
$-2 \cdot 792353286$	for $i=3$
$2 \cdot 816351026$	for $i=4$
$-2 \cdot 824396016$	for $i=5$
$2 \cdot 827082783$	for $i=6$
$-2 \cdot 82797894$	for $i=7$
$2 \cdot 828277722$	for $i=8$
$-2 \cdot 828377323$	for $i=9$
$2 \cdot 828410524$	for $i=10$
$-2 \cdot 828421591$	for $i=11$
$2 \cdot 82842528$	for $i=12$
$-2 \cdot 82842651$	for $i=13$
$2 \cdot 82842692$	for $i=14$
$-2 \cdot 828427056$	for $i=15$
$2 \cdot 828427102$	for $i=16$
$-2 \cdot 828427117$	for $i=17$
$2 \cdot 828427122$	for $i=18$
$-2 \cdot 828427124$	for $i=19$
$2 \cdot 828427124$	for $i=20$
$-2 \cdot 828427125$	for $i=21$
$2 \cdot 828427125$	for $i=22$
$-2 \cdot 828427125$	for $i=23$
$2 \cdot 828427125$	for $i=24$

...value repeating

Fig.9. Output response of Ex.2.5

So (2.4) is proved analytically.
$u(p, n)= \pm|p|^{\frac{n}{n-1}}$.

Case (4): $n<0$
In this case the predicted answer will be as (2•3) i.e.

$$
u(p, n)=(p)^{\frac{n}{n-1}}
$$

Ex.2.6: Example: $x=2, p=2, n=-3$
Predicted answer:

$$
(2)^{\frac{-3}{-3-1}}=(2)^{\frac{-3}{-4}}=(2)^{\frac{3}{4}}=1.681792831
$$

And the iterative results for $f(x, i)$ will be:

1.587401052	for $i=1$
1.714487966	for $i=2$
1.671033598	for $i=3$
1.685394614	for $i=4$
1.680593947	for $i=5$
1.682192648	for $i=6$
1.681659579	for $i=7$
1.68183725	for $i=8$
1.681778024	for $i=9$
1.681797766	for $i=10$
1.681791185	for $i=11$
1.681793379	for $i=12$
1.681792648	for $i=13$
1.681792891	for $i=14$
1.68179281	for $i=15$
1.681792837	for $i=16$
1.681792828	for $i=17$
1.681792831	for $i=18$
1.68179283	for $i=19$
1.681792831	for $i=20$
1.68179283	for $i=21$
1.681792831	for $i=22$
1.681792831	for $i=23$
1.681792831	for $i=24$
$\ldots . v a l u e$ repeating	

Fig.10. Output response of Ex.2.6
So prediction in (2.3) is also proved analytically.

But in case of $p=0, n= \pm 1$ this series cannot be obtained.
So, for $f(x, i)$ be the iterative function of random variable x and i be the order of iteration and is defined as $f(x, i+1)=$ $f(f(x, i), i+1)$, thenlim ${ }_{i \rightarrow \infty} f(x, i)=$ constant.
So this is also an example of limiting progression.

2.3 Type III

Limiting Progressive Function:
$f(x, i)=(\cos (x))_{i}$ where $x \in(-\infty,+\infty), i \in I$
Predicting Expression:
$u=0.9998477415310881129598107686798$
Form:
$f(x, i)=(\cos (x))_{i}$ where $x \in(-\infty,+\infty)$ and x is in degree, $i \in I$ is the order of iteration. ... (3.1)
In this case also if we consider x as a random variable like all the previous types, we get a result from (3.1), then the answer again be considered as x and so on. In this case, this series will have a limiting value, which is $0 \cdot 9998477415310881129598107686798$ if we consider 31 digits after decimal point. So,
$\lim _{\substack{i \rightarrow \infty \\ i \text { constant })}} f(x, i)=0.9998477415310881129598107686798$
Ex.3.1: Now take an example: suppose we take any random variable $x=23$.
Then the iterative results will be:

$0 \cdot 92050485345244032739689472330046$	for $i=1$
$0 \cdot 99987094716081078813848034332851$	for $i=2$
$0 \cdot 99984773446360205953437286377479$	for $i=3$
$0 \cdot 99984774153324055527488336319716$	for $i=4$
$0 \cdot 99984774153108745742149048473084$	for $i=5$
$0 \cdot 9998477415310881131545862281788$	for $i=6$
$0 \cdot 99984774153108811295974996487155$	for $i=7$
$0 \cdot 99984774153108811295981078719796$	for $i=8$
$0 \cdot 99984774153108811295981076867416$	for $i=9$
$0 \cdot 9998477415310881129598107686798$	for $i=10$
$0 \cdot 9998477415310881129598107686798$	for $i=11$

Fig.11. Output response of Ex.3.1

Ex.3.2: Take another example: $x=2645$
Then the iterative results will be:

$-0 \cdot 57357643635104609610803191282616$	for $i=1$
$0 \cdot 99994989238691479899521937732222$	for $i=2$
$0 \cdot 9998477104188857772677217602915$	for $i=3$
$0 \cdot 99984774154056350767740513976426$	for $i=4$
$0 \cdot 99984774153108522717546536452938$	for $i=5$
$0 \cdot 99984774153108811383869249723479$	for $i=6$
$0 \cdot 99984774153108811295954310034415$	for $i=7$
$0 \cdot 99984774153108811295981085019969$	for $i=8$
$0 \cdot 99984774153108811295981076865497$	for $i=9$
$0 \cdot 99984774153108811295981076867981$	for $i=10$
$0 \cdot 9998477415310881129598107686798$	for $i=11$
$0 \cdot 9998477415310881129598107686798$	for $i=12$

...value repeating

Fig.12. Output response of Ex.3.2

Ex.3.3: Take another example: $x=-67$
The iterative results will be:
$0 \cdot 39073112848927375506208458888909$ $0 \cdot 99997674699528153455312175786626$ $0 \cdot 99984770223921958855808301788233$ $0 \cdot 99984774154305467057989511316751$ $0 \cdot 99984774153108446847789970519695$ $0 \cdot 99984774153108811406975807530513$ $0 \cdot 99984774153108811295947272803272$ $0 \cdot 99984774153108811295981087163197$ $0 \cdot 99984774153108811295981076864845$ $0 \cdot 99984774153108811295981076867981$ $0 \cdot 9998477415310881129598107686798$ $0 \cdot 9998477415310881129598107686798$...value repeating

$$
\begin{aligned}
& \text { for } i=1 \\
& \text { for } i=2 \\
& \text { for } i=3 \\
& \text { for } i=4 \\
& \text { for } i=5 \\
& \text { for } i=6 \\
& \text { for } i=7 \\
& \text { for } i=8 \\
& \text { for } i=9 \\
& \text { for } i=10 \\
& \text { for } i=11 \\
& \text { for } i=12
\end{aligned}
$$

Fig.13. Output response of Ex.3.3

Then our prediction was exactly right. This is proved now by analytical method.
So, as we can see
$\cos (0.9998477415310881129598107686798)$

$$
=0.9998477415310881129598107686798
$$

In this case we can say $\cos (x)=x$
where $x=0.9998477415310881129598107686798$
This type of series is not applicable for $\sin x, \tan x$, or other trigonometric expression.
So, for $f(x, i)$ be the iterative function of random variable x and i be the order of iteration and is defined as $f(x, i+1)=$ $f(f(x, i), i+1)$, thenlim ${ }_{i \rightarrow \infty} f(x, i)=$ constant.
So this is also an example of limiting progression.

2.4 Type IV

Limiting Progressive Function:
$f(x, i)=\left(\tan ^{-1} x\right)_{i}$ where $x \in(-\infty,+\infty)-\{0\}, i \in I$
Predicting Expression:

$$
u= \pm 89 \cdot 35883917
$$

Form:
$\overline{f(x, i)}=\left(\tan ^{-1} x\right)_{i}$ where $x \in(-\infty,+\infty)-\{0\}$ is a value, not in degree, $i \in I$ is the order of iteration.
In this case also if we consider x as a random variable, we get a result from (4.1) for $i-t h$ iteration, then this value is again used as x for $i+1-s t$ iteration and so on. In this case also this series will have a limiting value which is $\pm 89 \cdot 35883917$ if we consider 8 digits after point. If x be positive, the limiting value will be positive and if x be negative, the limiting value will be negative.

Ex.4.1: Now let's take an example: $x=45$
Then the iterative results will be:

$88 \cdot 72696998$	for $i=1$
$89 \cdot 35427352$	for $i=2$
$89 \cdot 35880641$	for $i=3$
$89 \cdot 35883893$	for $i=4$
$89 \cdot 35883916$	for $i=5$

89•35883917 for $i=6$
89•35883917 for $i=7$
...value repeating.

Fig.14. Output response of Ex.4.1

Ex.4.2: Take another example: $x=23134$
Then the iterative results will be:

$89 \cdot 99752331$	for $i=1$
$89 \cdot 36338891$	for $i=2$
$89 \cdot 35887181$	for $i=3$
$89 \cdot 3588394$	for $i=4$
$89 \cdot 35883917$	for $i=5$
$89 \cdot 35883917$	for $i=6$

...value repeating.

Ex.4.3: Take another example: $x=-23134$
Then the sequential results will be:
-89.9975331 for $i=1$
-89.36338891 for $i=2$
$-89 \cdot 35887181$ for $i=3$
$-89 \cdot 3588394$ for $i=4$
$-89 \cdot 35883917$ for $i=5$
$-89 \cdot 35883917$ for $i=6$
...value repeating

Fig.16. Output response of Ex.4.3

So, this prediction was true.
As we can see $\tan ^{-1}(\pm 89 \cdot 35883917)= \pm 89.35883917$
So, we can say $\tan ^{-1}(x)=x$ where $\mathrm{x}= \pm 89 \cdot 35883917$
This type of series is not applicable for $\sin ^{-1} x, \cos ^{-1} x$, or other inverse trigonometric expression.
So, for $f(x, i)$ be the iterative function of random variable x and i be the order of iteration and is defined as $f(x, i+1)=$ $f(f(x, i), i+1)$, thenlim ${ }_{i \rightarrow \infty} f(x, i)=$ constant.
So this is also an example of limiting progression.

2.5 Type V

Limiting Progressive Function:
$f(x, i)=\left(\frac{\sin x}{x}\right)_{i}$ where $x \in R-\{0\}, i \in I$
Predicting Expression:
$u=0.017453292$
Limiting Progressive Function:
$f(x, i)=\left(\frac{\tan x}{x}\right)_{i}$ where $x \in R-\{0\}, i \in I$
Predicting Expression:

$$
u=0.017453293
$$

Form(I):
$f(x, i)=\left(\frac{\sin x}{x}\right)_{i}$ where $x \in R-\{0\}$,
$i \in I$ is the order of iteration.
In this case also if we consider x as a random variable, we get a result from (5.1) for $i-t h$ iteration, then this value is again used as x for $i+1-s t$ iteration and so on. In this case also this series will have a limiting value which is 0.017453292 if we consider 9 digits after decimal point.
Ex.5.1.1: Now consider an example: Let's take $x=123$
The successive iterative results will be:
$0 \cdot 006818459 \quad$ for $i=1$
$0 \cdot 017453292$
for $i=2$
$0 \cdot 017453292$
for $i=3$
and thus so on.

Fig.17. Output response of Ex.5.1.1

So, it is now clear that, this series has a limiting value: $0 \cdot 017453292$.

Ex.5.1.2: Now let's take another example: $x=-0.785$
The iterative results will be:
$0 \cdot 017452746 \quad$ for $i=1$
$0 \cdot 017453292 \quad$ for $i=2$
$0 \cdot 017453292$ for $i=3$

Fig.18. Output response of Ex.5.1.2
Here also the limiting value is $0 \cdot 017453292$.
Actually this value is: $0 \cdot 017453292250022980737699843973$ considering 31 digits after decimal point.

Form (II):
$f(x, i)=\left(\frac{\tan x}{x}\right)_{i}$ where $x \in R-\{0\}$,
$i \in I$ is the order of iteration.
... (5.2)

In this case also if we consider x as a random variable, we get a result from (5.2) for $i-t h$ iteration, then this value is again used as x for $i+1-s t$ iteration and so on. In this case also this series will have a limiting value which is $0 \cdot 017453293$ if you consider 9 digits after point.

Ex.5.2.1: Now consider an example: Let's take $x=123$
The successive results will be:=
$-0 \cdot 012519227$ for $i=1$
$0 \cdot 017453292$ for $i=2$
$0 \cdot 017453293$ for $i=3$
and thus so on.

So, it is now clear that, this series has a limiting value $0 \cdot 017453293$.

Ex.5.2.2: Now let's take another example: $x=-0.785$
The iterative results will be:

$0 \cdot 017454384$	for $i=1$
$0 \cdot 017453293$	for $i=2$
$0 \cdot 017453293$	for $i=3$

Fig.20. Output response of Ex.5.2.2

Here also the limiting value is $0 \cdot 017453293$.
Actually
this
value
is:
$0 \cdot 017453293059783998466834689798$ considering 31 digits after decimal point. However, we have seen than these limiting values of those two series are about same (up to 8 digits after decimal point).

Moreover $\left(\frac{\cos x}{x}\right)$ series has no such property.
So, for $f(x, i)$ be the iterative function of random variable x and i be the order of iteration and is defined as $f(x, i+1)=$ $f(f(x, i), i+1)$, thenlim $\lim _{i \rightarrow \infty} f(x, i)=$ constant.
So these are also the examples of limiting progression.
There are many other types of limiting progression.

3 Application of Limiting Progression in the Context of Transfer Function of a Feedback System

For type I: $f(x, i)=(x / p+n)_{i}$ where $x \in R, p \in R-\{0,1\}$, $n \in R-\{0\}, i \in I$
In reference with Ex.1.1: $\left.x\right|_{i=0}=2341, p=2$ and $n=3$.
Here $\left.x\right|_{i=0}$ is the initial input and $\left.x\right|_{i}$ are the consecutive inputs and $f(x, i)$ is the i-th output of the system. Again p and n are the independent parameters of the feedback system. Here the system is called the feedback system as the output is fully or partially used as input to the same system. $f(x, i)$ is the transfer function of the feedback system.
Here from the iterative outputs of the system, it is clear that the limiting value (final value) does not depend on the input or the output of the system rather depends on the parameters of the system. So if we have only p and n, we will have the final value of the system, whatever be the input of the system. So we can predict the system. In these two cases the predicted value is always 6 .
We have another output parameter of the system which is i. i is equivalent to 'time' in time domain analysis of the system. Here the value of i where the limiting value is attained, is not only depends on p and n but also the $\left.x\right|_{i=0}$ i.e. the input of the system. In reference with Ex.1.1 and Ex. 1.2, the value of p and n are same in both case i.e. 2 and 3 respectively. But while reaching the limiting value, the value of i is 44 and 39 in the two different cases respectively, where the inputs were 2341 and 123.29 respectively. Hence we can conclude that the value of i also depends on initial input of the system.

For type II: $f(x, i)=\left(p \times(x)^{\frac{1}{n}}\right)_{i}$ where $x \in R-\{0\}, p \in R-$
$\{0\}, n \in R-[-1,+1], i \in Y$

Case (1): In reference with Ex.2.1: $\left.x\right|_{i=0}=23, p=2, n=3$
In this case also, we can conclude in the same way through the essence of the previous discussion, that p and n are acting as independent parameters of the feedback system and i is acting as dependent parameter which is dependent on p, n and $\left.x\right|_{i=0}$. As in Ex.2.1 we have discussed using different values of $\left.x\right|_{i=0}$
viz. 23 and 1345, but in both cases, $p=2, n=3$. We have seen that the limiting value of the progression is $2 \cdot 828427125$ in both cases.
Case (2): Here n has a limitation while $x<0$, it should be odd always, because $j-$ th root of a negative real number is always imaginary when j is even integer. The rest of the conclusion is same.
Case (3): When $p<0$, the feedback system will have special characteristics. The system will be oscillatory in nature, but not like positive feedback. The limiting value will have the same amplitude both in positive and negative side of i-axis (time axis). So this system will have marginal stability (much like sinusoidal in nature). As in Ex. $\left.2.5 x\right|_{i=0}=2, p=-2, n=3$, the limiting value is $\pm 2 \cdot 828427125$.
Case (4): When $n<0$, a single limiting value is attained, from both side of i-axis. Initially the system will have a decaying oscillating nature, and gradually it will attain a limiting value. As described in Ex.2.6. $\left.x\right|_{i=0}=2, p=2, n=-3$, the system will attain a limiting value of 1.681792831 after passing through an initial decaying oscillation.

For type III: $f(x, i)=(\cos (x))_{i}$ where $x \in(-\infty,+\infty), i \in I$,
typeIV: $\quad f(x, i)=\left(\tan ^{-1} x\right)_{i}$ where $x \in(-\infty,+\infty)-\{0\}, i \in I$ andtype $\mathrm{V}: f(x, i)=\left(\frac{\sin x}{x}\right)_{i}$ where $x \in R-\{0\}, i \in I$

$$
f(x, i)=\left(\frac{\tan x}{x}\right)_{i} \text { where } x \in R-\{0\}, i \in I
$$

there is no independent parameter of these types of feedback systems. i is only acting as dependent parameter which is dependent only on $\left.x\right|_{i=0}$ i.e. the initial value of x. These are all the examples of constant limiting progression, as whatever be the initial input condition, the final output of the system is always same. So we can't control the output of these systems.

4 Conclusions and Future Works

Prediction of output and controlling of a system based on the prediction can be done using the mathematical study of the system. This study is not complete yet, as the expression of i where the limiting value is attained is not clear yet. As i is dependent on the system parameter and the initial input value, so it must have an expression. Working on these expressions requires time domain analysis of the system. So this paper gives an initial concept and steps towards the mathematical study. All the software simulations are done in MATLAB.

ACKNOWLEDGMENT

I wish to thank my college Future Institute of Engineering and Management for inspiring and encouraging me as an undergraduate engineering student.

References

[1] F. Golnaraghi, B.C.Kuo, Automatic Control Systems, Ninth Edition, John Wiley \& Sons Inc, 2010.
[2] A. K. Mandal, Introduction to Control Engineering, Modeling, Analysis
and Design, New Age International Publishers, 2006.

[^0]: - Arindam Bose is currently pursuing BTech degree program in electronics and communication engineering from Future Institute of Engineering and Management of West Bengal University of technology, India, PH+919051320505. E-mail: adambose1990@gmail.com

